Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 60, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517574

RESUMO

The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).


Assuntos
Metano , Methylococcaceae , Metano/análise , Svalbard , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/análise , Filogenia , DNA Bacteriano/genética , DNA Bacteriano/química
2.
Microbiologyopen ; 13(2): e1397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441345

RESUMO

This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.


Assuntos
Enterococcus faecium , Enterococcus faecium/genética , Tetraciclina , Esgotos , Antibacterianos/farmacologia , Enterococcus/genética , Eritromicina/farmacologia , Noruega
3.
Front Microbiol ; 14: 1213718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485507

RESUMO

The Barents Sea is a transition zone between the Atlantic and the Arctic Ocean. The ecosystem in this region is highly variable, and a seasonal baseline of biological factors is needed to monitor the effects of global warming. In this study, we report the results from the investigations of the bacterial and archaeal community in late winter, spring, summer, and early winter along a transect through the northern Barents Sea into the Arctic Ocean east of Svalbard using 16S rRNA metabarcoding. Winter samples were dominated by members of the SAR11 clade and a community of nitrifiers, namely Cand. Nitrosopumilus and LS-NOB (Nitrospinia), suggest a prevalence of chemoautotrophic metabolisms. During spring and summer, members of the Gammaproteobacteria (mainly members of the SAR92 and OM60(NOR5) clades, Nitrincolaceae) and Bacteroidia (mainly Polaribacter, Formosa, and members of the NS9 marine group), which followed a succession based on their utilization of different phytoplankton-derived carbon sources, prevailed. Our results indicate that Arctic marine bacterial and archaeal communities switch from carbon cycling in spring and summer to nitrogen cycling in winter and provide a seasonal baseline to study the changes in these processes in response to the effects of climate change.

4.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193662

RESUMO

Why are some groups of bacteria more diverse than others? We hypothesize that the metabolic energy available to a bacterial functional group (a biogeochemical group or 'guild') has a role in such a group's taxonomic diversity. We tested this hypothesis by looking at the metacommunity diversity of functional groups in multiple biomes. We observed a positive correlation between estimates of a functional group's diversity and their metabolic energy yield. Moreover, the slope of that relationship was similar in all biomes. These findings could imply the existence of a universal mechanism controlling the diversity of all functional groups in all biomes in the same way. We consider a variety of possible explanations from the classical (environmental variation) to the 'non-Darwinian' (a drift barrier effect). Unfortunately, these explanations are not mutually exclusive, and a deeper understanding of the ultimate cause(s) of bacterial diversity will require us to determine if and how the key parameters in population genetics (effective population size, mutation rate, and selective gradients) vary between functional groups and with environmental conditions: this is a difficult task.


Assuntos
Bactérias , Ecossistema , Bactérias/genética
5.
Microbiologyopen ; 12(1): e1345, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36825884

RESUMO

Under very cold conditions, delicate ice-crystal structures called frost flowers emerge on the surface of newly formed sea ice. These understudied, ephemeral structures include saline brine, organic material, inorganic nutrients, and bacterial and archaeal communities in their brine channels. Hitherto, only a few frost flowers have been studied during spring and these have been reported to be dominated by Rhizobia or members of the SAR11 clade. Here we report on the microbiome of frost flowers sampled during the winter and polar night in the Barents Sea. There was a distinct difference in community profile between the extracted DNA and RNA, but both were dominated by members of the SAR11 clade (78% relative abundance and 41.5% relative activity). The data further suggested the abundance and activity of Cand. Nitrosopumilus, Nitrospinia, and Nitrosomonas. Combined with the inference of marker genes based on the 16S rRNA gene data, this indicates that sulfur and nitrogen cycling are likely the major metabolism in these ephemeral structures.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Regiões Árticas , Archaea/genética , Flores , Camada de Gelo/microbiologia
6.
Int J Hyg Environ Health ; 248: 114075, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521369

RESUMO

The aim of this study was to understand the prevalence of antibiotic resistance in Klebsiella pneumoniae present in the population in Bergen city, Norway using city-scale sewage-based surveillance, as well as the potential spread of K. pneumoniae into the marine environment through treated sewage. From a total of 30 sewage samples collected from five different sewage treatment plants (STPs), 563 presumptive K. pneumoniae isolates were obtained on Simmons Citrate Agar with myo-Inositol (SCAI) plates, and 44 presumptive K. pneumoniae isolates on SCAI plates with cefotaxime. Colistin resistance was observed in 35 isolates, while cefotaxime resistance and tigecycline resistance was observed in only five isolates each, out of 563 presumptive K. pneumoniae isolates. All 44 isolates obtained on cefotaxime-containing plates were multidrug-resistant, with 25% (n = 11) showing resistance against tigecycline. Clinically important acquired antibiotic resistance genes (ARGs), like blaCTX-M-14, blaCTX-M-15, qnrS1, aac(3)-IIe, tet(A), and sul1, were detected in several sequenced Klebsiella spp. isolates (n = 53). All sequenced colistin-resistant isolates (n = 13) had a mutation in the mgrB gene with nucleotide substitution at position C88T creating a premature stop codon. All sequenced tigecycline-resistant isolates (n = 4) harbored a Tet(A) variant with 22 amino acid (aa) substitutions compared to the reference protein. The sequenced K. pneumoniae isolates (n = 44) belonged to 22 different sequence types (STs) with ST730 (29.5%) as most prevalent, followed by pathogenic ST307 (11.4%). Virulence factors, including aerobactin (iutA), enterobactin (entABCDEFS and fepABCDG), salmochelin (iro), and yersiniabactin (ybt) were detected in several sequenced K. pneumoniae isolates, suggesting pathogenicity potential. Heavy metal resistance genes were common in sequenced K. pneumoniae isolates (n = 44) with silver (silABCEFPRS) and copper (pcoABDRS) resistance genes present in 79.5% of the isolates. Sewage-based surveillance can be a useful tool for understanding antibiotic resistance in pathogens present within a population and to provide up-to date information on the current resistance situation. Our study presents a framework for population-based surveillance of resistance in K. pneumoniae.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Colistina , Tigeciclina , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias , Infecções por Klebsiella/epidemiologia , Cefotaxima , Testes de Sensibilidade Microbiana
7.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014036

RESUMO

The Arctic is warming 2-3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Candidatus Nitrosopumilus and bacteria belonging to the Gammaproteobacteria (Colwellia, Kangiellaceae, and Nitrinocolaceae), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Cand. Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of Gammaproteobacteria (Kangiellaceae, Nitrinocolaceae) and Bacteroidia (Polaribacter), while Cand. Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.

9.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668875

RESUMO

Methylotrophic bacteria (non-methanotrophic methanol oxidizers) consuming reduced carbon compounds containing no carbon-carbon bonds as their sole carbon and energy source have been found in a great variety of environments. Here, we report a unique moderately thermophilic methanol-oxidising bacterium (strain LS7-MT) that grows optimally at 55 °C (with a growth range spanning 30 to 60 °C). The pure isolate was recovered from a methane-utilizing mixed culture enrichment from an alkaline thermal spring in the Ethiopia Rift Valley, and utilized methanol, methylamine, glucose and a variety of multi-carbon compounds. Phylogenetic analysis of the 16S rRNA gene sequences demonstrated that strain LS7-MT represented a new facultatively methylotrophic bacterium within the order Hyphomicrobiales of the class Alphaproteobacteria. This new strain showed 94 to 96% 16S rRNA gene identity to the two methylotroph genera, Methyloceanibacter and Methyloligella. Analysis of the draft genome of strain LS7-MT revealed genes for methanol dehydrogenase, essential for methanol oxidation. Functional and comparative genomics of this new isolate revealed genomic and physiological divergence from extant methylotrophs. Strain LS7-MT contained a complete mxaF gene cluster and xoxF1 encoding the lanthanide-dependent methanol dehydrogenase (XoxF). This is the first report of methanol oxidation at 55 °C by a moderately thermophilic bacterium within the class Alphaproteobacteria. These findings expand our knowledge of methylotrophy by the phylum Proteobacteria in thermal ecosystems and their contribution to global carbon and nitrogen cycles.

10.
Microorganisms ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751313

RESUMO

Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycete-related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.

11.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301987

RESUMO

Permafrost underlies a large portion of the land in the Northern Hemisphere. It is proposed to be an extreme habitat and home for cold-adaptive microbial communities. Upon thaw permafrost is predicted to exacerbate increasing global temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledge on composition, functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost microbiome in this climate sensitive island ecosystem. To do so, we developed comparative metagenomics methods on metagenomic-assembled genomes (MAG). We found that community composition in Svalbard soil horizons shifted markedly with depth: the dominant phylum switched from Acidobacteria and Proteobacteria in top soils (active layer) to Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria in permafrost layers. Key metabolic potential propagated through permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited resource conditions of deep Svalbard soils.


Assuntos
Pergelissolo , Metagenoma , Noruega , Solo , Microbiologia do Solo , Svalbard
12.
Microorganisms ; 8(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069978

RESUMO

Aerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a substantial contribution in the control of global warming through biological reduction of methane emissions and have a unique capability of utilizing methane as their sole carbon and energy source. Here, we report a novel moderately thermophilic Methylococcus-like Type Ib methanotroph recovered from an alkaline thermal spring (55.4 °C and pH 8.82) in the Ethiopian Rift Valley. The isolate, designated LS7-MC, most probably represents a novel species of a new genus in the family Methylococcaceae of the class Gammaproteobacteria. The 16S rRNA gene phylogeny indicated that strain LS7-MC is distantly related to the closest described relative, Methylococcus capsulatus (92.7% sequence identity). Growth was observed at temperatures of 30-60 °C (optimal, 51-55 °C), and the cells possessed Type I intracellular membrane (ICM). The comparison of the pmoA gene sequences showed that the strain was most closely related to M. capsulatus (87.8%). Soluble methane monooxygenase (sMMO) was not detected, signifying the biological oxidation process from methane to methanol by the particulate methane monooxygenase (pMMO). The other functional genes mxaF, cbbL and nifH were detected by PCR. To our knowledge, the new strain is the first isolated moderately thermophilic methanotroph from an alkaline thermal spring of the family Methylococcaceae. Furthermore, LS7-MC represents a previously unrecognized biological methane sink in thermal habitats, expanding our knowledge of its ecological role in methane cycling and aerobic methanotrophy.

13.
Nat Microbiol ; 5(1): 126-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740763

RESUMO

When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Divisão Celular , Ecossistema , Variação Genética , Genoma Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Metabolismo Secundário , Transdução de Sinais
14.
Microbiol Resour Announc ; 8(27)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270193

RESUMO

Permafrost contains one of the least known soil microbiomes, where microbial populations reside in an ice-locked environment. Here, 56 prokaryotic metagenome-assembled genome (MAG) sequences from 13 phyla are reported. These MAGs will provide information on metabolic pathways that could mediate biogeochemical cycles in Svalbard permafrost.

15.
Antonie Van Leeuwenhoek ; 112(8): 1273-1280, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30919144

RESUMO

Antimicrobials are naturally produced by microbes and therefore have always been present in their environment, as well as accompanying resistance mechanisms. The antibiotic resistance profile of environmental species is particularly relevant since genetic determinants of resistance can spread through horizontal gene transfer and reach clinically important species. The phylum Planctomycetes comprises Gram-negative bacteria characterised by unusual features and appear to be ubiquitously distributed. Members of this group have recently been characterised as producers of bioactive compounds, namely antimicrobials, but their antibiotic susceptibility profile has been scarcely studied. In this study, the antibiotic susceptibility profile of six phylogenetically distinct strains of Planctomycetes was assessed. All strains showed resistance to beta-lactams, aminoglycosides and glycopeptides. Our results showed that antibiotics which target protein synthesis or DNA replication, with the exception of aminoglycosides, were the most effective against the tested strains. The highest efficacy was observed for chloramphenicol, clindamycin and ciprofloxacin. The highest level of antimicrobial resistance was observed in the uncharacterised novel taxon Planctomyces sp. strain FF15 which was only susceptible to erythromycin and ciprofloxacin.


Assuntos
Antibacterianos/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Planctomycetales/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana
16.
Ecol Lett ; 21(9): 1440-1452, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014593

RESUMO

In food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self-similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles. Reviewing theoretical and experimental literature relevant to the marine photic zone, we argue that there is a wide spectrum of phenomena, including single cell activity of prokaryotes, microbial biodiversity at different levels of resolution, ecosystem functioning, regional biogeochemical features and evolution at different timescales; that all can be understood as variations over a common principle, summarised in what has been termed the 'Killing-the-Winner' (KtW) motif. Considering food webs as assemblages of such motifs may thus allow for a more integrated approach to aquatic microbial ecology.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade
17.
Environ Microbiol ; 20(12): 4328-4342, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29971895

RESUMO

Thawing permafrost can stimulate microbial activity, leading to faster decomposition of formerly preserved organic matter and CO2 release. Detailed knowledge about the vertical distribution of the responsible microbial community that is changing with increasing soil depth is limited. In this study, we determined the microbial community composition from cores sampled in a high Arctic heath at Svalbard, Norway; spanning from the active layer (AL) into the permafrost layer (PL). A special aim has been on identifying a layer of recently thawed soil, the transition zone (TZ), which might provide new insights into the fate of thawing permafrost. A unique sampling strategy allowed us to observe a diverse and gradually shifting microbial community in the AL, a Bacteroidetes dominated community in the TZ and throughout the PL, a community strongly dominated by a single Actinobacteria family (Intrasporangiaceae). The contrasting abundances of these two taxa caused a community difference of about 60%, just within 3 cm from TZ to PL. We incubated subsamples at about 5°C and measured highest CO2 production rates under aerobic incubations, yet contrasting for five different layers and correlating to the microbial community composition. This high resolution strategy provides new insights on how microbial communities are structured in permafrost and a better understanding of how they respond to thaw.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Microbiota , Pergelissolo/microbiologia , Microbiologia do Solo , Regiões Árticas , Consumo de Oxigênio , Svalbard
18.
ISME J ; 12(11): 2694-2705, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991763

RESUMO

Combining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon). The model predicts a trophic cascade from copepods via ciliates to flagellates, which was confirmed experimentally. Auto- and heterotrophic flagellates affect bacterial growth rate and abundance via competition for mineral nutrients and predation, respectively. In +Z, the model predicts low bacterial abundance and activity, and little response to glucose; as opposed to clear glucose consumption effects in -Z. We observed a more resilient bacterial response to high copepods and demonstrate this was due to changes in bacterial community equitability. Species able to use glucose to improve their competitive and/or defensive properties, became predominant. The observed shift from a SAR11-to a Psychromonodaceae - dominated community suggests the latter was pivotal in this modification of ecosystem function. We argue that this group used glucose to improve its defensive or its competitive abilities (or both). Adding such flexibility in bacterial traits to the model, we show how it creates the observed resilience to top-down manipulations observed in our experiment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Copépodes/fisiologia , Cadeia Alimentar , Animais , Regiões Árticas , Processos Autotróficos , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Cilióforos/fisiologia , Glucose/metabolismo , Processos Heterotróficos , Microbiota
19.
Stand Genomic Sci ; 13: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686747

RESUMO

Here we present the genome of Methylovulum psychrotolerans strain HV10-M2, a methanotroph isolated from Hardangervidda national park (Norway). This strain represents the second of the two validly published species genus with a sequenced genome. The other is M. miyakonense HT12, which is the type strain of the species and the type species of the genus Methylovulum. We present the genome of M. psychrotolerants str. HV10-M2 and discuss the differences between M. psychrotolerans and M. miyakonense. The genome size of M. psychrotolerans str. HV10-M2 is 4,923,400 bp and contains 4415 protein-coding genes, 50 RNA genes and an average GC content of 50.88%.

20.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617984

RESUMO

Methane (CH4) is one of the most abundant greenhouse gases in the atmosphere and identification of its sources and sinks is crucial for the reliability of climate model outputs. Although CH4 production and consumption rates have been reported from a broad spectrum of environments, data obtained from glacier forefields are restricted to a few locations. We report the activities of methanotrophic communities and their diversity along a chronosequence in front of a sub-Arctic glacier using high-throughput sequencing and gas flux measurements. CH4 oxidation rates were measured in the field throughout the growing season during three sampling times at eight different sampling points in combination with laboratory incubation experiments. The overall results showed that the methanotrophic community had similar trends of increased CH4 consumption and increased abundance as a function of soil development and time of year. Sequencing results revealed that the methanotrophic community was dominated by a few OTUs and that a short-term increase in CH4 concentration, as performed in the field measurements, altered slightly the relative abundance of the OTUs.


Assuntos
Biodiversidade , Camada de Gelo/microbiologia , Methylococcaceae/isolamento & purificação , Regiões Árticas , Sequenciamento de Nucleotídeos em Larga Escala , Metano/metabolismo , Methylococcaceae/classificação , Methylococcaceae/genética , Noruega , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA